Abstract
Abstract The necessity for the development of repeatable, efficient, and accurate monitoring of land cover change is paramount to successful management of our planet’s natural resources. This study evaluated a number of remote sensing methods for classifying land cover and land cover change throughout a two-county area in northeastern Oregon (1986 to 2011). In the past three decades, this region has seen significant changes in forest management that have affected land use and land cover. This study employed an accuracy assessment-based empirical approach to test the optimality of a number of advanced digital image processing techniques that have recently emerged in the field of remote sensing. The accuracies are assessed using traditional error matrices, calculated using reference data obtained in the field. We found that, for single-time land cover classification, Bayes pixel-based classification using samples created with scale and shape segmentation parameters of 8 and 0.3, respectively, resulted in the highest overall accuracy. For land cover change detection, using Landsat-5 TM band 7 with a change threshold of 1.75 standard deviations resulted in the highest accuracy for forest harvesting and regeneration mapping.
Department
Natural Resources and the Environment
Publication Date
1-2015
Journal Title
Photogrammetric Engineering and Remote Sensing
Publisher
American Society for Photogrammetry and Remote Sensing
Digital Object Identifier (DOI)
10.14358/PERS.81.1.37
Document Type
Article
Recommended Citation
Campbell, M., Congalton, R.G., Hartter, J., Ducey, M. Optimal land cover mapping and change analysis in northeastern oregon using landsat imagery. (2015) Photogrammetric Engineering and Remote Sensing, 81 (1), pp. 37-47. doi: 10.14358/PERS.81.1.37
Rights
© 2014 American Society for Photogrammetry and Remote Sensing