Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution

Abstract

Increased atmospheric deposition of N to forests is an issue of global concern, with largely undocumented long-term effects on soil solution chemistry. In contrast to bulk soil properties, which are typically slow to respond to a chronic stress, soil solution chemistry may provide an early indication of the long-term changes in soils associated with a chronic stress. At the Harvard Forest, soil solution was collected beneath the forest floor in zero tension lysimeters for 10 years (1993-2002) as part of an N saturation experiment. The experiment was begun in 1988 with 5 or 15 g N m(-2) per year added to hardwood and pine forest plots, and our samples thus characterize the long-term response to N fertilization. Samples were routinely analyzed for inorganic nitrogen, dissolved organic nitrogen (DON), and dissolved organic carbon (DOC); selected samples were also analyzed to determine qualitative changes in the composition of dissolved organic matter. Fluxes of DOC, DON, and inorganic N were calculated based on modeled water loss from the forest floor and observed concentrations in lysimeter samples. The concentration and flux of inorganic N lost from the forest floor in percolating soil solution are strongly affected by N fertilization and have not shown any consistent trends over time. On average, inorganic N fluxes have reached or exceeded the level of fertilizer application in most plots. Concentrations of DOC were unchanged by N fertilization in both the hardwood and pine stands, with long-term seasonal averages ranging from 31-57 mg l(-1) (hardwood) and 36-93 mg l(-1) (pine). Annual fluxes of DOC ranged from 30-50 g m(-2) per year. DON concentrations more than doubled, resulting in a shift toward N-rich organic matter in soil solution percolating from the plots, and DON fluxes of 1-3 g m(-2) per year. The DOC:DON ratio of soil solution under high N application (10-20) was about half that of controls. The organic chemistry of soil solution undergoes large qualitative changes in response to N addition. With N saturation, there is proportionally more hydrophilic material in the total DON pool, and a lower C:N ratio in the hydrophobic fraction of the total DOM pool. Overall, our data show that fundamental changes in the chemistry of forest floor solution have occurred in response to N fertilization prior to initiation of our sampling. During the decade of this study (years 5-14 of N application) both inorganic N and dissolved organic matter concentrations have changed little despite the significant biotic changes that have accompanied N saturation. (C) 2004 Elsevier B.V. All rights reserved.

Publication Date

7-12-2004

Journal Title

Forest Ecology and Management

Publisher

Elsevier

Digital Object Identifier (DOI)

10.1016/j.foreco.2004.03.010

Scientific Contribution Number

2219

Document Type

Article

Rights

© 2004 Elsevier B.V. All rights reserved.

Share

COinS