Jackson Estuarine Laboratory
Physiological ecology of four Polysiphonia species (Rhodophyta, Ceramiales)
Abstract
Photosynthesis and respiration of 4 species of the marine red algal genus Polysiphonia were evaluated under a variety of light, temperature and salinity conditions. The manometric results were compared with the local distribution and abundance of each species. The species can be separated into two distinct categories based on their overall distribution and temperature optima: (1) cold water plants [P. lanosa (L.) Tandy and P. elongata (Hudson) Sprengel], with peak photosynthesis at 21° to 24°C, but with active photosynthesis as low as 5°C; (2) plants with warm-water affinities [P. nigrescens (Hudson) Greville and P. subtilissima Montagne], having photosynthetic optima at 27° to 30°C, and exhibiting little or no photosynthesis below 10°C. The plants from the first group exhibit thermal injury at temperatures of 25°C and show a narrow tolerance to low salinities during periods of high temperatures. The plants from the second group show thermal injury at 30°C and have a wider tolerance to low salinities. The horizontal distribution of the 4 Polysiphonia species within the Great Bay Estuary System of New Hampshire, USA, is primarily governed by their tolerances to high temperatures and low salinities. The temperature optimum for each of the species corresponds to its particular estuarine distribution. Thus, P. subtilissima, having the highest temperature optimum, penetrated furthest into the Estuary, while P. lanosa, having the lowest temperature optimum, was restricted to the more coastal stations. There was a good correspondence between the natural distribution patterns and the manometric results.
Publication Date
2-1975
Journal Title
Marine Biology
Digital Object Identifier (DOI)
Document Type
Article
Recommended Citation
Fralick, R.A. and A.C. Mathieson. 1975. Physiological ecology of four Polysiphonia species (Rhodophyta, Ceramiales). Marine Biology 29:29-36. (Contribution No. 731 in the Agricultural Experiment Station Series)