https://dx.doi.org/10.1016/0272-7714(89)90002-4">
 

Jackson Estuarine Laboratory

Estuarine ecology of phenanthrene-degrading bacteria

Abstract

Phenanthrene degrading bacteria were ubiquitously distributed in waters and sediments of the Great Bay Estuary, NH, as determined using a 14C-phenanthrene mineralization assay. Similar activities were observed in water samples collected in March and June when these were incubated at 18 °C even though ambient water temperatures were 1–4 °C and 10–22 °C, respectively. This observation indicated the constant presence of a mesophilic phenanthrene-degrading bacterial population in the estuary. Among water samples, the highest biodegradation activities were associated with samples collected downstream from a dredging operation which introduced high concentrations of coal tar PAH (polycyclic aromatic hydrocarbons) into the Cocheco River, and in areas receiving PAH from pleasure and commercial boating activities. Mid-estuarine maxima in biodegradation activity during both sampling trips suggested adaptation of the microbial flora to the salinities prevailing in the low turnover, high residence time portion of the Estuary at the time of sampling. Despite the hydrophobicity of phenanthrene, no correlation between biodegradation rates and particulate matter concentrations were observed. Similarly, concentrations of nutrients and dissolved and particulate organic matter correlated poorly with biodegradation rates. Better agreements between 14C-phenanthrene mineralization potentials and plate counts on a phenanthrene/toluene agar (PTA) medium were observed. Phenanthrene biodegradative activities and numbers of culturable bacteria growing on PTA were governed by the degree of previous exposure to PAH.

Publication Date

8-1-1989

Journal Title

Estuarine, Coastal and Shelf Science

Publisher

Elsevier

Digital Object Identifier (DOI)

https://dx.doi.org/10.1016/0272-7714(89)90002-4

Document Type

Article

Share

COinS