Honors Theses and Capstones
Date of Award
Spring 2020
Project Type
Senior Thesis
College or School
CEPS
Department
Physics
Program or Major
Physics
Degree Name
Bachelor of Science
First Advisor
Chia-Lin Huang
Second Advisor
Katharine Duderstadt
Third Advisor
Shawna Hollen
Abstract
The spatial and temporal distribution of high energy electron precipitation from the Van Allen radiation belts is not currently well-understood. The FIREBIRD-II mission (2015-present) and the Van Allen Probes (2012-2019) provide a unique opportunity to examine the behaviors and drivers of high energy electron precipitation. This study quantifies electron precipitation observed by FIREBIRD-II as a function of radial distance (L-shell), magnetic local time (MLT), hemisphere, and geomagnetic indices (Kp). Electron precipitation was observed to peak at L-shell 4.5-5. Regions of elevated electron precipitation were identified at L-shell 4-6 at dawn (MLT 6-9) and dusk (MLT 15-21). Hemisphere filtering indicated very distinct regions of increased precipitation at late dawn and early dusk at L-shell 4-6 in the Northern Hemisphere, while the Southern Hemisphere showed more overall activity as well as increased activity at early dawn and late dusk. Precipitation at high Kp indices (Kp >= 4) displayed elevated activity at all local times. In addition, multiple studies have proposed electromagnetic ion cyclotron (EMIC) waves as a potential driver of electron precipitation. This work searches for connections between EMIC waves observed by the Van Allen Probes and electron precipitation observed by FIREBIRD-II. During times of observed EMIC activity by the Van Allen Probes the FIREBIRD-II satellites recorded increased precipitation during MLT 0-3, MLT 6-9, and MLT 12-18, with activity being especially notable at MLT 15-18. Electron precipitation in the afternoon sector corresponds well with elevated EMIC wave occurrence rates reported in a previous study [Saikin et al., 2015].
Recommended Citation
Raeder, Timothy, "Quantifying Electron Precipitation in the Van Allen Radiation Belts" (2020). Honors Theses and Capstones. 542.
https://scholars.unh.edu/honors/542