Honors Theses and Capstones

Date of Award

Spring 2017

Project Type

Senior Honors Thesis

College or School

CEPS

Department

Earth Sciences

Program or Major

Earth Science: Oceanography

Degree Name

Bachelor of Science

First Advisor

Thomas Lippmann

Abstract

As part of this research, FVCOM, a finite-volume coastal ocean numerical hydrodynamic model (Chen, et al., 2003), was implemented into the Great Bay estuary. FVCOM is one of several community models that have been developed for coastal regions, and was selected because it utilizes an unstructured grid to discretize the model domain. The unstructured grid provides the ability to have fine scale resolution near the boundary or coastline and decreased resolution away from the boundary where the flow field is less complicated, resulting in greatly reduced computational expense in less dynamic regions allowing model runs to be completed in much shorter time periods. Grid development also requires that bathymetric data is accurately assigned to grid nodes in such a way that the model itself will be numerically stable. This requires significant development time implementing an appropriate grid mesh (Persson and Strang, 2004) with bathymetry data that has been smoothed to limit inherent numerical noise in the computations. FVCOM was implemented on a grid with finest resolution equaling 30 m, and then tested on a 10 day run with offshore forcing determined analytically by the 8 most energetic semi-diurnal (M2, N2, S2, K2) and diurnal (K1, O1, P1, Q1) tidal constituents at Fort Pt., NH (https://tidesandcurrents.noaa.gov/harcon.html?id=8423898), and including fresh water river fluxes from 6 rivers equivalent to 5 times the average daily discharge (Ward and Bub, 2007). The model was further tested utilizing the 100 year tropical storm event estimated from the North Atlantic Coast Comprehensive Study (NACCS; USACE, 2015), and the highest projected sea level rise scenario for year 2100 estimated by NOAA (http://www.corpsclimate.us/ccaceslcurves.cfm). The numerically stable model indicates that the grid can be used to simulate tidal forcing with maximum projected year storm surge and sea level rise in the Great Bay, and – with further development to include finer (10 m) mesh resolution and inclusion of surface waves and wind forcing – may be able to predict future flooding scenarios based on forecasted storm events and sea level rise.

Included in

Oceanography Commons

Share

COinS