Date of Award

Fall 1999

Project Type

Dissertation

Program or Major

Mathematics

Degree Name

Doctor of Philosophy

First Advisor

Kevin M Short

Abstract

Results in nonlinear dynamics and chaos during this decade have been applied to problems in secure communications with limited success. Most of these applications have been based on the chaotic synchronization property discovered by Pecora and Carroll in 1989 [37]. Short [44, 45, 48] demonstrated the effectiveness of nonlinear dynamic (NLD) forecasting methods in breaking this class of communication schemes. In response, investigators have proposed enhancements to the basic synchronization technique in an attempt to improve the security properties. In this work two of these newer communication systems will be analyzed using NLD forecasting and other techniques to determine the level of security they provide. It will be shown that the transmitted waveform alone allows an eavesdropper to extract the message.

During the course of this research, a new impulsively initialized, binary chaotic communication scheme has been developed, which eliminates the most significant weaknesses of its predecessors. This new approach is based on symbolic dynamics and chaotic control, and may be implemented using one-dimensional maps, which gives the designer more control over the statistics of the transmitted binary stream. Recent results in a certain class of one-dimensional chaotic maps will be discussed in this context.

The potential for using NLD techniques in problems from standard digital communications will also be explored. The two problems which will be addressed are bit errors due to channel effects and co-channel interference. It will be shown that NLD reconstruction methods provide a way to exploit the short-term determinism that is present in these types of communication signals.

Share

COinS