Date of Award

Fall 2013

Project Type

Thesis

Program or Major

Electrical Engineering

Degree Name

Master of Science

First Advisor

Michael J Carter

Abstract

A communication framework capable of rapid deployment and adaptive wireless support was designed and implemented using an unmanned aerial vehicle equipped with a 900 MHz, frequency- hopping transceiver configured as a store and forward packet repeater. Users with or without line of sight propagation between one another can automatically connect through the packet repeater and employ the aerial platform for extended data transfer. The airborne vehicle accommodates dynamic re-positioning in response to varying radio link conditions, thus supporting communication between highly mobile and/or line of sight-obstructed users even as the network topology evolves. Using open source and custom written software applications, as well as specially modified radio firmware, a command and data-logging environment was designed to monitor, control and initialize radio network conditions and vehicle platforms in real time. Careful real world evaluation of the developed system has demonstrated a robust platform capable of improvement to a user's communication performance.

Share

COinS