Date of Award
Spring 2022
Project Type
Thesis
Program or Major
Civil Engineering
Degree Name
Master of Science
First Advisor
Majid Ghayoomi
Second Advisor
Fei Han
Third Advisor
Jean Benoit
Abstract
Post-liquefaction response and residual strength play important roles in stability assessment of liquefied ground. Considering the recent advancements in application of induced partial saturation for liquefaction mitigation, the state of knowledge in estimating the residual strength should be extended for liquefied desaturated soils. In this thesis, the residual strength response of a clean sand at different saturation levels was investigated using a Ring Shear Device (RSD). Direct air injection was used to desaturate the soil, which helped mitigating the liquefaction under cyclic loading. However, by raising the shear strain level, both saturated and partially saturated soils were liquefied followed by residual strength measurement. Results indicate that the residual strength increased with a reduction of the saturation level due to the change in compressibility and consequent volume reduction. In addition, the strain rate dependency of the residual strength was confirmed, since an increase of shear strain rate resulted in an increase in residual strength both under saturated and partially saturated conditions.
Recommended Citation
Gates, Ian Douglas, "Post-Liquefaction Residual Strength of Saturated and Partially Saturated Soils" (2022). Master's Theses and Capstones. 1555.
https://scholars.unh.edu/thesis/1555