Date of Award

Fall 2020

Project Type

Thesis

Departments (Collect)

New Hampshire EPSCoR

Program or Major

Natural Resources

Degree Name

Master of Science

First Advisor

Catherine M Ashcraft

Second Advisor

Lawrence C Hamilton

Third Advisor

Russell G Congalton

Abstract

New Hampshire’s aquatic resources provide many important ecosystem services and values, such as recreation, wildlife habitat, flood storage, nutrient reduction, community identity and aesthetic enjoyment. However, the many competing interests that seek to benefit from New Hampshire’s aquatic resources present challenges for efforts to steward public aquatic resources in the public interest. This thesis presents findings about the environmental justice outcomes of New Hampshire’s compensatory mitigation program, the Aquatic Resource Mitigation (ARM) fund, to inform aquatic restoration policy.

Previous studies have found evidence that aquatic restoration programs can lead to systemic resource relocation and patterns of inequality in outcomes. Using geospatial and statistical analyses, this research compares census-tract level socioeconomic data on specific demographic characteristics (minority population, low education, population density and income) with the spatial location of New Hampshire compensatory mitigation program sites. Census tracts are analyzed according to groupings at the state level and for two service areas with different population densities: the Merrimack and Middle Connecticut Service Areas. This research also applies a geospatial approach to recommend areas where outreach could be expanded to increase environmental justice communities’ participation in the ARM fund.

Consistent with previous compensatory mitigation and environmental justice literature, this research finds demographic characteristics are an important consideration for environmental justice. At the statewide census-tract level, I find that populations around mitigation sites are more likely to have a lower percentage of nonwhite populations, lower population density, and higher income, as compared to sites without mitigation sites. Populations around permit sites are also likely to have lower population densities. I also find that this level of analysis is important to recognize inequalities and inform natural resource management decisions. In contrast, to the statewide results, I find significant demographic differences within the relatively low population density Middle Connecticut region. For the Merrimack region, which is larger and more diverse, results are similar to the statewide analysis: I find that populations around mitigation sites are more likely to have a lower percentage of nonwhite populations. Unlike the statewide analysis, I find that populations around mitigation sites are more likely to have lower educational attainment and populations around permit sites are more likely to have higher incomes.

Then, I identified 26 environmental justice communities with aquatic restoration opportunities and found that almost half of these communities have participated in the ARM fund by submitting proposals to receive mitigation funding. Using an optimizing hot spot analysis and a heat map, I identified three environmental justice communities that have experienced significant wetland loss and to which the ARM Fund could target outreach: Manchester, Dover and Newington.

This thesis research is intended to provide guidance to state agencies, cities and towns, nongovernmental organizations, and others interested in advancing protection of New Hampshire’s aquatic resources. The analytic methods contribute to broader research into the human dimensions of water policy.

Comments

A recording of Simone Chapman's thesis defense presentation and the accompanying slides are available here: https://scholars.unh.edu/thesis/1660/

Additional outcomes from Simone Chapman's MS thesis research are available here:

Share

COinS