Date of Award
Winter 2015
Project Type
Thesis
Program or Major
Electrical and Computer Engineering
Degree Name
Master of Science
First Advisor
Qiaoyan Yu
Second Advisor
Michael J Carter
Third Advisor
W. Thomas Miller III
Abstract
The Integrated Circuit (IC) design flow follows a global business model. A global business means that the processes in the IC design flow could be outsourced, and consequently security threats have been introduced. Security threats on hardware include side channel analysis, reverse engineering, information leakage, counterfeit chips, and hardware Trojans (HTs).This work mainly focuses on HT attacks, which execute a malicious operation on the system when a trigger condition is met. Networks-on-Chip (NoCs) are a popular communications infrastructure for many-core systems, which have proved to be a more scalable option over the traditional bus interface. However, the high scalability and modularity provided by NoCs have introduced new vulnerabilities in the design, leading to hardware Trojans capable of causing several Denial of Service (DoS) attacks on the network.
A 4x4 Mesh-topology NoC with a more robust router microarchitecture is presented with several innovations relative to the baseline. A collaborative dynamic permutation and flow unit (flit) integrity check method is proposed to thwart an attacker from maliciously modifying the flit content in the routers of a NoC. Our method complements other HT detection approaches for the NoC network interfaces. Moreover, we exploit the Physical Unclonable Function (PUF) structure and the traffic routing history to generate a unique key vector for each router to select one of the multiple permutation configurations. Simulation and Field Programmable Gate Array (FPGA) results are compared between the proposed NoC microarchitecture and four other existing solutions found in literature, and it was shown that the proposed method outperforms all of the existing security methods.
Recommended Citation
Frey, Jonathan, "Mitigation of Hardware Trojan Attacks on Networks-on-Chip" (2015). Master's Theses and Capstones. 1070.
https://scholars.unh.edu/thesis/1070