Abstract

The Medium Energy Gamma-ray Astronomy (MEGA) telescope concept will soon be proposed as a MIDEX mission. This mission would enable a sensitive all-sky survey of the medium-energy gamma-ray sky (0.4 - 50 MeV) and bridge the huge sensitivity gap between the COMPTEL and OSSE experiments on the Compton Gamma Ray Observatory, the SPI and IBIS instruments on INTEGRAL, and the visionary Advanced Compton Telescope (ACT) mission. The scientific goals include, among other things, compiling a much larger catalog of sources in this energy range, performing far deeper searches for supernovae, better measuring the galactic continuum and line emissions, and identifying the components of the cosmic diffuse gamma-ray emission. MEGA will accomplish these goals using a tracker made of Si strip detector (SSD) planes surrounded by a dense high-Z calorimeter. At lower photon energies (below ~ 30 MeV), the design is sensitive to Compton interactions, with the SSD system serving as a scattering medium that also detects and measures the Compton recoil energy deposit. If the energy of the recoil electron is sufficiently high (> 2 MeV) its momentum vector can also be measured. At higher photon energies (above ~ 10 MeV), the design is sensitive to pair production events, with the SSD system measuring the tracks of the electron and positron. A prototype instrument has been developed and calibrated in the laboratory and at a gamma-ray beam facility. We present calibration results from the prototype and describe the proposed satellite mission.

Department

Space Science Center, Physics

Publication Date

9-2-2005

Journal Title

SPIE Proceedings

Publisher

SPIE

Digital Object Identifier (DOI)

10.1117/12.617315

Document Type

Conference Proceeding

Rights

© (2005) COPYRIGHT SPIE--The International Society for Optical Engineering.

Share

COinS