Abstract
The field of medium-energy gamma-ray astronomy urgently needs a new mission to build on the success of the COMPTEL instrument on the Compton Gamma Ray Observatory. This mission must achieve sensitivity significantly greater than that of COMPTEL in order to advance the science of relativistic particle accelerators, nuclear astrophysics, and diffuse backgrounds, and bridge the gap between current and future hard X-ray missions and the high-energy Fermi mission. Such an increase in sensitivity can only come about via a dramatic decrease in the instrumental background. We are currently developing a concept for a low-background Compton telescope that employs modern scintillator technology to achieve this increase in sensitivity. Specifically, by employing LaBr3 scintillators for the calorimeter, one can take advantage of the unique speed and resolving power of this material to improve the instrument sensitivity while simultaneously enhancing its spectroscopic and imaging performance. Also, using deuterated organic scintillator in the scattering detector will reduce internal background from neutron capture. We present calibration results from a laboratory prototype of such an instrument, including time-of-flight, energy, and angular resolution, and compare them to simulation results using a detailed Monte Carlo model. We also describe the balloon payload we have built for a test flight of the instrument in the fall of 2010.
Department
Space Science Center, Physics
Publication Date
7-29-2010
Journal Title
SPIE Proceedings
Publisher
SPIE
Digital Object Identifier (DOI)
10.1117/12.857545
Document Type
Conference Proceeding
Recommended Citation
Peter F. Bloser ; James M. Ryan ; Jason S. Legere ; Manuel Julien ; Christopher M. Bancroft ; Mark L. McConnell ; Mark Wallace ; R. Marc Kippen and Shawn Tornga "A fast scintillator Compton telescope for medium-energy gamma-ray astronomy", Proc. SPIE 7732, Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray, 773222 (July 29, 2010); doi:10.1117/12.857545; http://dx.doi.org/10.1117/12.857545
Rights
© (2010) COPYRIGHT SPIE--The International Society for Optical Engineering.