Ionization of doped helium nanodroplets: Complexes of C(60) with water clusters

Abstract

Water clusters are known to undergo an autoprotonation reaction upon ionization by photons or electron impact, resulting in the formation of (H(2)O)(n)H(3)O(+). Ejection of OH cannot be quenched by near-threshold ionization; it is only partly quenched when clusters are complexed with inert gas atoms. Mass spectra recorded by electron ionization of water-doped helium droplets show that the helium matrix also fails to quench OH loss. The situation changes drastically when helium droplets are codoped with C(60). Charged C(60)-water complexes are predominantly unprotonated; C(60)(H(2)O)(4)(+) and (C(60))(2)(H(2)O)(4)(+) appear with enhanced abundance. Another intense ion series is due to C(60)(H(2)O)(n)OH(+); dehydrogenation is proposed to be initiated by charge transfer between the primary He(+) ion and C(60). The resulting electronically excited C(60)(+)* leads to the formation of a doubly charged C(60)-water complex either via emission of an Auger electron from C(60)(+)*, or internal Penning ionization of the attached water complex, followed by charge separation within {C(60)(H(2)O)(n)}(2+). This mechanism would also explain previous observations of dehydrogenation reactions in doped helium droplets. Mass-analyzed ion kinetic energy scans reveal spontaneous (unimolecular) dissociation of C(60)(H(2)O)(n)(+). In addition to the loss of single water molecules, a prominent reaction channel yields bare C(60)(+) for sizes n=3, 4, or 6. Ab initio Hartree-Fock calculations for C(60)-water complexes reveal negligible charge transfer within neutral complexes. Cationic complexes are well described as water clusters weakly bound to C(60)(+). For n=3, 4, or 6, fissionlike desorption of the entire water complex from C(60)(H(2)O)(n)(+) energetically competes with the evaporation of a single water molecule. (C) 2010 American Institute of Physics. [doi:10.1063/1.3436721]

Department

Physics

Publication Date

6-16-2010

Journal Title

Journal of Chemical Physics

Publisher

AMERICAN INSTITUTE OF PHYSICS

Digital Object Identifier (DOI)

10.1063/1.3436721

Document Type

Article

Rights

© 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Share

COinS