Ground-state energy of the interacting Bose gas in two dimensions: An explicit construction
Abstract
The isotropic scattering phase shift is calculated for nonrelativistic bosons interacting at low energies via an arbitrary finite-range potential in d space-time dimensions. Scattering on a (d - 1)-dimensional torus is then considered, and the eigenvalue equation relating the energy levels on the torus to the scattering phase shift is derived. With this technology in hand, and focusing on the case of two spatial dimensions, a perturbative expansion is developed for the ground-state energy of N identical bosons which interact via an arbitrary finite-range potential in a finite area. The leading nonuniversal effects due to range corrections and three-body forces are included. It is then shown that the thermodynamic limit of the ground-state energy in a finite area can be taken in closed form to obtain the energy per particle in the low-density expansion by explicitly summing the parts of the finite-area energy that diverge with powers of N. The leading and subleading finite-size corrections to the thermodynamic limit equation of state are also computed. Closed-form results-some well known, others perhaps not-for two-dimensional lattice sums are included in an Appendix.
Department
Physics
Publication Date
12-8-2010
Journal Title
Physical Review a
Publisher
AMERICAN PHYSICAL SOC
Digital Object Identifier (DOI)
10.1103/PhysRevA.82.063610
Document Type
Article
Recommended Citation
Beane, R. Silas, "Ground-state energy of the interacting Bose gas in two dimensions: An explicit construction" (2010). Physical Review a. 102.
https://scholars.unh.edu/physics_facpub/102
Rights
© 2010 The American Physical Society