Creative Commons License

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.


Research has shown that much of the science produced does not make its way to the decision-making table. This leads to a gap between scientific and societal progress, which is problematic. This study tests a novel science-based negotiation simulation that integrates role-play simulations (RPSs) with a system dynamic model (SDM). In RPSs, stakeholders engage in a mock decision-making process (reflecting real-life institutional arrangements and scientific knowledge) for a set period. By playing an assigned role (different from the participant’s real-life role), participants have a safe space to learn about each other’s perspectives, develop shared understanding about a complex issue, and collaborate on solving that issue. System Dynamic Models (SDMs) are visual tools used to simulate the interactions and feedback with a complex system. We test the integration of the two approaches toward problem-solving with real stakeholders in New Hampshire and Rhode Island via a series of two consecutive workshops in each state. The workshops are intended to engage representatives from diverse groups who are interested in dam related issues to foster dialogue, learning, and creativity. Participants will discuss a hypothetical (yet realistic) dam-decision scenario to consider scientific information and explore dam management options that meet one another's interests. In the first workshop participants will contribute to the design of the fictionalized dam decision scenario and the SDM, for which we have presented drafts based on a literature review, stakeholder interviews, and expert knowledge. In the second workshop, participants will assume another representative's role and discuss dam management options for the fictionalized scenario. We will report results related to the effectiveness to which this new knowledge production process leads to more innovative and collaborative decision-making around New England dams.

Publication Date


Grant/Award Number and Agency

Support for this project is provided by the National Science Foundation’s Research Infrastructure Improvement Program NSF #IIA-1539071. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Document Type