Ecological succession in long-term experimentally evolved biofilms produces synergistic communities
Abstract
Many biofilm populations are known for their exceptional biodiversity, but the relative contributions of the forces that could produce this diversity are poorly understood. This uncertainty grows in the old, well-established communities found on many natural surfaces and in long-term, chronic infections. If the prevailing interactions among species within biofilms are positive, productivity should increase with diversity, but if they tend towards competition or antagonism, productivity should decrease. Here, we describe the parallel evolution of synergistic communities derived from a clone of Burkholderia cenocepacia during similar to 1500 generations of biofilm selection. This long-term evolution was enabled by a new experimental method that selects for daily cycles of colonization, biofilm assembly and dispersal. Each of the six replicate biofilm populations underwent a common pattern of adaptive morphological diversification, in which three ecologically distinct morphotypes arose in the same order of succession and persisted. In two focal populations, mixed communities were more productive than any monoculture and each variant benefited from the mixture. These gains in output resulted from asymmetrical cross-feeding between ecotypes and the expansion and partitioning of biofilm space that constructed new niches. Therefore, even in the absence of starting genetic variation, prolonged selection for surface colonization generates a dynamic of ecological succession that enhances productivity.
Department
Molecular, Cellular and Biomedical Sciences
Publication Date
9-2-2010
Journal Title
Isme Journal
Publisher
NATURE PUBLISHING GROUP
Digital Object Identifier (DOI)
10.1038/ismej.2010.136
Document Type
Article
Recommended Citation
Poltak, S.R. and V.S. Cooper. 2010. Ecological succession of long-term evolved biofilm populations produces synergistic communities. ISME journal, doi:10.1038/ismej.2010.136
Rights
Copyright © 2011 International Society for Microbial Ecology All rights reserved