Jackson Estuarine Laboratory

Production and nutrient dynamics of a Syringodium filiforme Kütz. Seagrass bed in Indian River Lagoon, Florida


A year-long analysis of the characteristics of the seagrassSyringodium filiforme and the associated dynamics of the nutrient pool in the sediment pore water was done to assess co-variation. Changes in seagrass growth rate and standing stock throughout the year were accompanied by seasonal changes in the nutrient pools. The link between plant production and morphometrics and the sediment nutrient pool was found to be predominantly physiological, with the plant balancing the ability to photosynthesize with the nutrients needed for maintaining production. Measurements of whole plant growth for this seagrass, rather than the more typical leaf growth measurements, show that the production of new shoots and rhizome elongation for these plants represents as substantial amount of growth that usually goes unmeasured. Further, these whole plant growth measures demonstrate the rapid lateral rhizome spread of this species, exceeding one meter per plant per year. The primary cause of seasonal variation in the yearly seagrass cycle was investigated. Correlation analysis supported the hypothesis that the major factor controlling seasonal variation in this seagrass was light. During the peak growing season, however, growth was not regulated by light but by nitrogen. Depletion of the sediment ammonium pool and reduction in pore water ammonium relative to adsorbed ammonium, as well as changes in N content of seagrass leaves, support our hypothesis of peak growing season nitrogen limitation. Our results forSyringodium filiforme in terrigenous sediments are in contrast to our recent findings of phosphorus limitation in this same species occurring in carbonate sediments.

Publication Date


Journal Title




Digital Object Identifier (DOI)

Document Type