Jackson Estuarine Laboratory

Fine-scale temporal variation in recruitment of a temperate demersal fish: the importance of settlement versus post-settlement loss


In order to understand variability in recruitment to populations of benthic and demersal marine species, it is critical to distinguish between the contributions due to variations in larval settlement versus those caused by post-settlement mortality. In this study, fine-scale (1–2 days) temporal changes in recruit abundance were followed through an entire settlement season in a temperate demersal fish in order to determine 1) how dynamic the process of recruitment is on a daily scale, 2) whether settlement and post-settlement mortality are influenced by habitat structure and conspecific density, and 3) how the relationship between settlement and recruitment changes over time. “Settlement” is considered to be the arrival of new individuals from the pelagic habitat, and “recruitment” is defined as the number of individuals surviving arbitrary periods of time after settlement. Replicate standardized habitat units were placed in 2 spatial configurations (clumped and randomly dispersed) and monitored visually for cunner (Tautogolabrus adspersus) settlement and recruitment every 1–2 days throughout the settlement season. The process of recruitment in T. adspersus was highly variable at a fine temporal scale. Changes in the numbers of recruits present on habitat units were due to both settlement of new individuals and mortality of animals previously recruited. The relative importance of these two processes appeared to change from day to day. The magnitude of the change in recruit number did not differ between the clumped and random habitats. However, post-settlement loss was significantly greater on randomly dispersed than clumped habitats. During several sampling dates, the extent of the change in recruit abundance was correlated with the density of resident conspecifics; however, on other dates no such relationship appeared to exist. Despite the presence of significant relationships between the change in recruit number and density, there was no evidence of either density-dependent mortality or settlement. Initially, there was a strong relationship between settlement and recruitment; however, this relationship weakened over time. Within 2 months after the cessation of settlement, post-settlement loss was greater than 99%, and no correlation remained between recruitment and the initial pattern of settlement. The results of this study demonstrate that the spatial arrangement of the habitat affects the rate and intensity of post-settlement loss. Counter to much current thinking, this study suggests that in order to understand the population ecology of reef fishes, knowledge of what habitats new recruits use and how mortality varies with structural aspects of the habitats is essential.

Publication Date


Journal Title




Digital Object Identifier (DOI)

Document Type