https://dx.doi.org/10.1029/2007JG000660">
 

Abstract

River systems are dynamic, highly connected water transfer networks that integrate a wide range of physical and biological processes. We used a river network nitrogen (N) removal model with daily temporal resolution to evaluate how elevated N inputs, saturation of the denitrification and total nitrate removal processes, and hydrologic conditions interact to determine the amount, timing and distribution of N removal in the fifth‐order river network of a suburban 400 km2 basin. Denitrification parameters were based on results from whole reach 15NO3 tracer additions. The model predicted that between 15 and 33% of dissolved inorganic nitrogen (DIN) inputs were denitrified annually by the river system. Removal approached 100% during low flow periods, even with the relatively low and saturating uptake velocities typical of surface water denitrification. Annual removal percentages were moderate because most N inputs occurred during high flow periods when hydraulic conditions and temperatures are less favorable for removal by channel processes. Nevertheless, the percentage of annual removal occurring during above average flow periods was similar to that during low flow periods. Predicted river network removal proportions are most sensitive to loading rates, spatial heterogeneity of inputs, and the form of the removal process equation during typical base flow conditions. However, comparison with observations indicates that removal by the river network is higher than predicted by the model at moderately high flows, suggesting additional removal processes are important at these times. Further increases in N input to the network will lead to disproportionate increases in N exports due to the limits imposed by process saturation.

Department

Earth Systems Research Center

Publication Date

9-23-2008

Journal Title

Journal of Geophysical Research: Biogeosciences

Publisher

American Geophysical Union (AGU)

Digital Object Identifier (DOI)

https://dx.doi.org/10.1029/2007JG000660

Document Type

Article

Rights

©2008. American Geophysical Union. All Rights Reserved.

Comments

This is an article published by AGU in Journal of Geophysical Research: Biogeosciences in 2008, available online: https://dx.doi.org/10.1029/2007JG000660

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.