https://dx.doi.org/10.1029/2006JG000210">
 

Abstract

This study examined daily, seasonal, and interannual variations in CH4 emissions at a temperate peatland over a 5‐year period. We measured net ecosystem CO2 exchange (NEE), CH4 flux, water table depth, peat temperature, and meteorological parameters weekly from the summers (1 May to 31 August) of 2000 through 2004 at Sallie's Fen in southeastern New Hampshire, United States. Significant interannual differences, driven by high variability of large individual CH4 fluxes (ranging from 8.7 to 3833.1 mg CH4 m−2 d−1) occurring in the late summer, corresponded with a decline in water table level and an increase in air and peat temperature. Monthly timescale yielded the strongest correlations between CH4 fluxes and peat and air temperature (r2 = 0.78 and 0.74, respectively) and water table depth (WTD) (r2 = 0.53). Compared to daily and seasonal timescales, the monthly timescale was the best timescale to predict CH4 fluxes using a stepwise multiple regression (r2 = 0.81). Species composition affected relationships between CH4 fluxes and measures of plant productivity, with sedge collars showing the strongest relationships between CH4 flux, water table, and temperature. Air temperature was the only variable that was strongly correlated with CH4 flux at all timescales, while WTD had either a positive or negative correlation depending on timescale and vegetation type. The timescale dependence of controls on CH4 fluxes has important implications for modeling.

Department

Earth Systems Research Center

Publication Date

2-10-2007

Journal Title

Journal of Geophysical Research: Biogeosciences

Publisher

American Geophysical Union (AGU)

Digital Object Identifier (DOI)

https://dx.doi.org/10.1029/2006JG000210

Document Type

Article

Rights

©2007. American Geophysical Union. All Rights Reserved.

Comments

This is an article published by AGU in Journal of Geophysical Research: Biogeosciences in 2007, available online: https://dx.doi.org/10.1029/2006JG000210

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.