https://dx.doi.org/10.3847/1538-4357/ad235a">
 

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

We present the first X-ray polarimetric study of the dipping accreting neutron star 4U 1624−49 with the Imaging X-ray Polarimetry Explorer. We report a detection of polarization in the nondip time intervals with a confidence level of 99.99%. We find an average polarization degree (PD) of 3.1% ± 0.7% and a polarization angle of 81° ± 6° east of north in the 2–8 keV band. We report an upper limit on the PD of 22% during the X-ray dips with 95% confidence. The PD increases with energy, reaching from 3.0% ± 0.9% in the 4–6 keV band to 6% ± 2% in the 6–8 keV band. This indicates the polarization likely arises from Comptonization. The high PD observed is unlikely to be produced by Comptonization in the boundary layer or spreading layer alone. It can be produced by the addition of an extended geometrically thin slab corona covering part of the accretion disk, as assumed in previous models of dippers, and/or a reflection component from the accretion disk.

Department

Space Science Center

Publication Date

3-1-2024

Journal Title

The Astrophysical Journal

Publisher

American Astronomical Society

Digital Object Identifier (DOI)

https://dx.doi.org/10.3847/1538-4357/ad235a

Document Type

Article

Rights

© 2024. The Author(s).

Comments

This is an open access article published by American Astronomical Society in The Astrophysical Journal in 2024, available online: https://dx.doi.org/10.3847/1538-4357/ad235a

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.