https://dx.doi.org/10.1038/s41398-022-02138-y">
 

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

The disease burden and healthcare costs of psychiatric diseases along with the pursuit to understand their underlying biochemical mechanisms have led to psychiatric biomarker investigations. Current advances in evaluating candidate biomarkers for psychiatric diseases, such as major depressive disorder (MDD), focus on determining a specific biomarker signature or profile. The origins of candidate biomarkers are heterogenous, ranging from genomics, proteomics, and metabolomics, while incorporating associations with clinical characterization. Prior to clinical use, candidate biomarkers must be validated by large multi-site clinical studies, which can be used to determine the ideal MDD biomarker signature. Therefore, identifying valid biomarkers has been challenging, suggesting the need for alternative approaches. Following validation studies, new technology must be employed to transition from biomarker discovery to diagnostic biomolecular profiling. Current technologies used in discovery and validation, such as mass spectroscopy, are currently limited to clinical research due to the cost or complexity of equipment, sample preparation, or measurement analysis. Thus, other technologies such as electrochemical detection must be considered for point-of-care (POC) testing with the needed characteristics for physicians’ offices. This review evaluates the advantages of using electrochemical sensing as a primary diagnostic platform due to its rapidity, accuracy, low cost, biomolecular detection diversity, multiplexed capacity, and instrument flexibility. We evaluate the capabilities of electrochemical methods in evaluating current candidate MDD biomarkers, individually and through multiplexed sensing, for promising applications in detecting MDD biosignatures in the POC setting.

Department

Open Access Fund; Chemical Engineering

Publication Date

9-8-2022

Journal Title

Translational Psychiatry

Publisher

Nature Publishing Group

Digital Object Identifier (DOI)

https://dx.doi.org/10.1038/s41398-022-02138-y

Document Type

Article

Rights

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Comments

This is an Open Access article published by Nature Publishing Group in Translational Psychiatry, available online: https://dx.doi.org/10.1038/s41398-022-02138-y

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.