https://dx.doi.org/10.1111/gcb.14517">
 

Abstract

Global soil carbon (C) stocks are expected to decline with warming, and changes in microbial processes are key to this projection. However, warming responses of critical microbial parameters such as carbon use efficiency (CUE) and biomass turnover (rB) are not well understood. Here, we determine these parameters using a probabilistic inversion approach that integrates a microbial-enzyme model with 22 years of carbon cycling measurements at Harvard Forest. We find that increasing temperature reduces CUE but increases rB, and that two decades of soil warming increases the temperature sensitivities of CUE and rB. These temperature sensitivities, which are derived from decades-long field observations, contrast with values obtained from short-term laboratory experiments. We also show that long-term soil C flux and pool changes in response to warming are more dependent on the temperature sensitivity of CUE than that of rB. Using the inversion-derived parameters, we project that chronic soil warming at Harvard Forest over six decades will result in soil C gain of <1.0% on average (1st and 3rd quartiles: 3.0% loss and 10.5% gain) in the surface mineral horizon. Our results demonstrate that estimates of temperature sensitivity of microbial CUE and rB can be obtained and evaluated rigorously by integrating multidecadal datasets. This approach can potentially be applied in broader spatiotemporal scales to improve long-term projections of soil C feedbacks to climate warming.

Department

Soil Biogeochemistry and Microbial Ecology

Publication Date

11-12-2018

Digital Object Identifier (DOI)

https://dx.doi.org/10.1111/gcb.14517

Document Type

Article

Rights

© 2018 John Wiley & Sons Ltd

Comments

This is an Author Manuscript of an article published by Wiley in Global Change Biology in 2018, the Version of Record is available online: https://dx.doi.org/10.1111/gcb.14517

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.