https://dx.doi.org/10.1002/ecs2.1234 ">
 

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Abstract

Human impacts on biogeochemical cycles are evident around the world, from changes to forest structure and function due to atmospheric deposition, to eutrophication of surface waters from agricultural effluent, and increasing concentrations of carbon dioxide (CO2) in the atmosphere. The National Ecological Observatory Network (NEON) will contribute to understanding human effects on biogeochemical cycles from local to continental scales. The broad NEON biogeochemistry measurement design focuses on measuring atmospheric deposition of reactive mineral compounds and CO2 fluxes, ecosystem carbon (C) and nutrient stocks, and surface water chemistry across 20 eco‐climatic domains within the United States for 30 yr. Herein, we present the rationale and plan for the ground‐based measurements of C and nutrients in soils and plants based on overarching or “high‐level” requirements agreed upon by the National Science Foundation and NEON. The resulting design incorporates early recommendations by expert review teams, as well as recent input from the larger natural sciences community that went into the formation and interpretation of the requirements, respectively. NEON's efforts will focus on a suite of data streams that will enable end‐users to study and predict changes to biogeochemical cycling and transfers within and across air, land, and water systems at regional to continental scales. At each NEON site, there will be an initial, one‐time effort to survey soil properties to 1 m (including soil texture, bulk density, pH, baseline chemistry) and vegetation community structure and diversity. A sampling program will follow, focused on capturing long‐term trends in soil C, nitrogen (N), and sulfur stocks, isotopic composition (of C and N), soil N transformation rates, phosphorus pools, and plant tissue chemistry and isotopic composition (of C and N). To this end, NEON will conduct extensive measurements of soils and plants within stratified random plots distributed across each site. The resulting data will be a new resource for members of the scientific community interested in addressing questions about long‐term changes in continental‐scale biogeochemical cycles, and is predicted to inspire further process‐based research.

Department

Earth Systems Research Center

Publication Date

3-17-2016

Journal Title

Ecosphere

Publisher

Ecological Society of America (ESA)

Digital Object Identifier (DOI)

https://dx.doi.org/10.1002/ecs2.1234

Document Type

Article

Rights

© 2016 Hinckley et al.

Comments

This is an article published by Ecological Society of America (ESA) in Ecosphere in 2016, available online: https://dx.doi.org/10.1002/ecs2.1234

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.