https://dx.doi.org/10.1007/s10533-019-00571-8">
 

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

Soil carbon models typically scale decomposition linearly with soil carbon (C) concentration, but this linear relationship has not been experimentally verified. Here we investigated the underlying biogeochemical mechanisms controlling the relationships between soil C concentration and decomposition rates. We incubated a soil/sand mixture with increasing amounts of finely ground plant residue in the laboratory at constant temperature and moisture for 63 days. The plant residues were rye (Secale cereale, C/N ratio of 23) and wheat straw (Triticum spp., C/N ratio of 109) at seven soil C concentrations ranging from 0.38 to 2.99%. We measured soil respiration, dissolved organic carbon (DOC) concentrations, microbial biomass, and potential enzyme activities over the course of the incubation. Rye, which had higher N and DOC contents, lost 6 to 8 times more C as CO2 compared to wheat residue. Under rye and wheat amendment, absolute C losses as CO2 (calculated per g dry soil) increased linearly with C concentration while relative C losses as CO2 (expressed as percent of initial C) increased with C concentration following a quadratic function. In low C concentration treatments (0.38–0.79% OC), DOC decreased gradually from day 3 to day 63, microbial C increased towards the end in the rye treatment or decreased only slightly with straw amendment, and microbes invested in general enzymes such as proteases and oxidative enzymes. At increasing C levels, enzyme activity shifted to degrading cellulose after 15 days and degrading microbial necromass (e.g. chitin) after 63 days. At the highest C concentrations (2.99% OC), microbial biomass peaked early in the incubation and remained high in the rye treatment and decreased only slightly in the wheat treatment. While wheat lost C as CO2 constantly at all C concentrations, respiration dynamics in the rye treatment strongly depended on C concentration. Our results indicate that litter quality and C concentration regulate enzyme activities, DOC concentrations, and microbial respiration. The potential for non-linear relationships between soil C concentration and decomposition may need to be considered in soil C models and soil C sequestration management approaches.

Department

Soil Biogeochemistry and Microbial Ecology

Publication Date

5-22-2019

Journal Title

Biogeochemistry

Publisher

Springer

Digital Object Identifier (DOI)

https://dx.doi.org/10.1007/s10533-019-00571-8

Document Type

Article

Comments

This is an open access article published by Springer in Biogeochemistry in 2019, available online: https://dx.doi.org/10.1007/s10533-019-00571-8

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.