https://dx.doi.org/10.1371/journal.pone.0233297">
 

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

Metal contamination of food and water resources is a known public health issue in Arctic and sub-Arctic communities due to the proximity of many communities to mining and drilling sites. In addition, permafrost thaw may release heavy metals sequestered in previously frozen soils, potentially contaminating food and water resources by increasing the concentration of metals in freshwater, plants, and wildlife. Here we assess the enrichment of selected heavy metals in Alaskan soils by synthesizing publicly available data of soil metal concentrations. We analyzed data of soil concentrations of arsenic, chromium, mercury, nickel, and lead from over 1,000 samples available through the USGS Alaskan Geochemical Database to evaluate 1) the spatial distribution of sampling locations for soil metal analysis, 2) metal concentrations in soils from different land cover types and depths, and 3) the occurrence of soils in Alaska with elevated metal concentrations relative to other soils. We found substantial clustering of sample sites in the southwestern portion of Alaska in discontinuous and sporadic permafrost, while the continuous permafrost zone in Northern Alaska and the more populous Interior are severely understudied. Metal concentration varied by land cover type but lacked consistent patterns. Concentrations of chromium, mercury, and lead were higher in soils below 10 cm depth, however these deeper soils are under-sampled. Arsenic, chromium, mercury, nickel and lead concentrations exceeded average values for US soils by one standard deviation or more in 3.7% to 18.7% of the samples in this dataset. Our analysis highlights critical gaps that impede understanding of how heavy metals in thawing permafrost soils may become mobilized and increase exposure risk for Arctic communities.

Department

Soil Biogeochemistry and Microbial Ecology

Publication Date

6-3-2020

Journal Title

PLoS ONE

Publisher

PLOS

Digital Object Identifier (DOI)

https://dx.doi.org/10.1371/journal.pone.0233297

Document Type

Article

Rights

© 2020 Perryman et al.

Comments

This is an open access article published by PLOS in PLoS ONE in 2020, available online: https://dx.doi.org/10.1371/journal.pone.0233297

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.