Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Physisorption on planar or curved graphitic surfaces or aromatic rings has been investigated by various research groups, but in these studies the substrate was usually strictly rigid. Here we report a combined experimental and theoretical study of helium adsorption on cationic hexaphenylbenzene (HPB), a propeller-shaped molecule. The orientation of its propeller blades is known to be sensitive to the environment, with substantial differences between the molecule in the gas phase and in the crystalline solid. Mass spectra of HenHPB+, synthesized in helium nanodroplets, indicate enhanced stability for ions containing n = 2, 4, 14, 28, 42, 44, or 46 helium atoms. Path-integral molecular dynamics simulations reveal a significant dependence of the dissociation energy on the details of the HPB geometry. Good agreement between the experimental data and calculated dissociation energies are obtained provided that the symmetry of HPB+ is reduced from D6 to D2, such a lower symmetry being suggested from quantum chemical calculations as arising upon electron removal.
Department
Physics
Publication Date
11-29-2021
Journal Title
European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics
Language
English
Publisher
Springer
Digital Object Identifier (DOI)
Document Type
Article
Recommended Citation
S. Kollotzek, F. Calvo, S. Krasnokutski, F. Zappa, P. Scheier, and O. Echt, Eur. Phys. J. D 75 (2021) 299
Rights
This publication is licensed under CC-BY 4.0
Included in
Atomic, Molecular and Optical Physics Commons, Computational Chemistry Commons, Physical Chemistry Commons
Comments
Published in the Topical Issue on “Molecular collisions, photoionization and dynamics: honouring Professor Vincent McKoy
This is an Open Access article published by Springer in European Physical Journal D in 2021, available online: https://doi.org/10.1140/epjd/s10053-021-00301-6