https://dx.doi.org/10.5194/acp-21-16775-2021">
 

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

Geostationary satellite measurements of aerosol optical depth (AOD) over East Asia from the Geostationary Ocean Color Imager (GOCI) and Advanced Himawari Imager (AHI) instruments can augment surface monitoring of fine particulate matter (PM2.5) air quality, but this requires better understanding of the AOD–PM2.5 relationship. Here we use the GEOS-Chem chemical transport model to analyze the critical variables determining the AOD–PM2.5 relationship over East Asia by simulation of observations from satellite, aircraft, and ground-based datasets. This includes the detailed vertical aerosol profiling over South Korea from the KORUS-AQ aircraft campaign (May–June 2016) with concurrent ground-based PM2.5 composition, PM10, and AERONET AOD measurements. The KORUS-AQ data show that 550 nm AOD is mainly contributed by sulfate–nitrate–ammonium (SNA) and organic aerosols in the planetary boundary layer (PBL), despite large dust concentrations in the free troposphere, reflecting the optically effective size and high hygroscopicity of the PBL aerosols. We updated SNA and organic aerosol size distributions in GEOS-Chem to represent aerosol optical properties over East Asia by using in situ measurements of particle size distributions from KORUS-AQ. We find that SNA and organic aerosols over East Asia have larger size (number median radius of 0.11 µm with geometric standard deviation of 1.4) and 20 % larger mass extinction efficiency as compared to aerosols over North America (default setting in GEOS-Chem). Although GEOS-Chem is successful in reproducing the KORUS-AQ vertical profiles of aerosol mass, its ability to link AOD to PM2.5 is limited by under-accounting of coarse PM and by a large overestimate of nighttime PM2.5 nitrate. The GOCI–AHI AOD data over East Asia in different seasons show agreement with AERONET AODs and a spatial distribution consistent with surface PM2.5 network data. The AOD observations over North China show a summer maximum and winter minimum, opposite in phase to surface PM2.5. This is due to low PBL depths compounded by high residential coal emissions in winter and high relative humidity (RH) in summer. Seasonality of AOD and PM2.5 over South Korea is much weaker, reflecting weaker variation in PBL depth and lack of residential coal emissions.

Department

Earth Systems Research Center

Publication Date

11-18-2021

Journal Title

Atmospheric Chemistry and Physics

Publisher

EGU

Digital Object Identifier (DOI)

https://dx.doi.org/10.5194/acp-21-16775-2021

Document Type

Article

Comments

This is an open access article published by EGU in 2021 in Atmospheric Chemistry and Physics, available online: https://dx.doi.org/10.5194/acp-21-16775-2021

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.