Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Using a new approach that constrains thermodynamic modeling of aerosol composition with measured gas-to-particle partitioning of inorganic nitrate, we estimate the acidity levels for aerosol sampled in the South Korean planetary boundary layer during the NASA/NIER KORUS-AQ field campaign. The pH (mean ± 1σ = 2.43 ± 0.68) and aerosol liquid water content determined were then used to determine the chemical regime of the inorganic fraction of particulate matter (PM) sensitivity to ammonia and nitrate availability. We found that the aerosol formation is always sensitive to HNO3 levels, especially in highly polluted regions, while it is only exclusively sensitive to NH3 in some rural/remote regions. Nitrate levels are further promoted because dry deposition velocity is low and allows its accumulation in the boundary layer. Because of this, HNO3 reductions achieved by NOx controls prove to be the most effective approach for all conditions examined, and that NH3 emissions can only partially affect PM reduction for the specific season and region. Despite the benefits of controlling PM formation to reduce ammonium-nitrate aerosol and PM mass, changes in the acidity domain can significantly affect other processes and sources of aerosol toxicity (such as e.g., solubilization of Fe, Cu and other metals) as well as the deposition patterns of these trace species and reactive nitrate.
Department
Earth Systems Research Center
Publication Date
7-21-2020
Journal Title
Atmospheric Chemistry and Physics
Publisher
EGU
Digital Object Identifier (DOI)
https://dx.doi.org/10.5194/acp-2020-501
Document Type
Article
Recommended Citation
Ibikunle, I., A. Beyersdorf, P. Campuzano-Jost, C. Corr, J. D. Crounse, J. Dibb, G. Diskin, G. Huey, J.-L. Jimenez, M. J. Kim, B. A. Nault, E. Scheuer, A. Teng, P. O. Wennberg, B. Anderson, J. Crawford, R. Weber, and A. Nenes (2020), Fine particle pH and sensitivity to NH3 and HNO3 over summertime South Korea during KORUS-AQ, Atmospheric Chemistry and Physics Discussion.
Comments
This is a preprint that was submitted to Atmospheric Chemistry and Physics, a final paper is not foreseen with this journal.