Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

New techniques have recently been developed and applied to capture reactive nitrogen species, including nitrogen oxides (NOx=NO+NO2), nitrous acid (HONO), nitric acid (HNO3), and particulate nitrate (pNO−3), for accurate measurement of their isotopic composition. Here, we report – for the first time – the isotopic composition of HONO from biomass burning (BB) emissions collected during the Fire Influence on Regional to Global Environments Experiment (FIREX, later evolved into FIREX-AQ) at the Missoula Fire Science Laboratory in the fall of 2016. We used our newly developed annular denuder system (ADS), which was verified to completely capture HONO associated with BB in comparison with four other high-time-resolution concentration measurement techniques, including mist chamber–ion chromatography (MC–IC), open-path Fourier transform infrared spectroscopy (OP-FTIR), cavity-enhanced spectroscopy (CES), and proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF).

In 20 “stack” fires (direct emission within ∼5 s of production by the fire) that burned various biomass materials from the western US, δ15N–NOx ranges from −4.3 ‰ to +7.0 ‰, falling near the middle of the range reported in previous work. The first measurements of δ15N–HONO and δ18O–HONO in biomass burning smoke reveal a range of −5.3 ‰ to +5.8 ‰ and +5.2 ‰ to +15.2 ‰, respectively. Both HONO and NOx are sourced from N in the biomass fuel, and δ15N–HONO and δ15N–NOx are strongly correlated (R2=0.89, p<0.001), suggesting HONO is directly formed via subsequent chain reactions of NOx emitted from biomass combustion. Only 5 of 20 pNO−3 samples had a sufficient amount for isotopic analysis and showed δ15N and δ18O of pNO−3 ranging from −10.6 ‰ to −7.4 ‰ and +11.5 ‰ to +14.8 ‰, respectively.

Our δ15N of NOx, HONO, and pNO−3 ranges can serve as important biomass burning source signatures, useful for constraining emissions of these species in environmental applications. The δ18O of HONO and NO−3 obtained here verify that our method is capable of determining the oxygen isotopic composition in BB plumes. The δ18O values for both of these species reflect laboratory conditions (i.e., a lack of photochemistry) and would be expected to track with the influence of different oxidation pathways in real environments. The methods used in this study will be further applied in future field studies to quantitatively track reactive nitrogen cycling in fresh and aged western US wildfire plumes.

Department

Earth Systems Research Center

Publication Date

11-29-2019

Journal Title

Atmospheric Measurement Techniques

Publisher

EGU

Digital Object Identifier (DOI)

https://dx.doi.org/10.5194/amt-12-6303-2019

Document Type

Article

Comments

This is an open access article published by EGU in 2019 in Atmospheric Measurement Techniques, available online: https://dx.doi.org/10.5194/amt-12-6303-2019

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.