Accuracy assessment of Global Food Security-support Analysis Data (GFSAD) cropland extent maps produced at three different spatial resolutions

Abstract

Monitoring global agriculture systems relies on accurate and timely cropland information acquired worldwide. Recently, the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Program has produced Global Food Security-support Analysis Data (GFSAD) cropland extent maps at three different spatial resolutions, i.e., GFSAD1km, GFSAD250m, and GFSAD30m. An accuracy assessment and comparison of these three GFSAD cropland extent maps was performed to establish their quality and reliability for monitoring croplands both at global and regional scales. Large area (i.e., global) assessment of GFSAD cropland extent maps was performed by dividing the entire world into regions using a stratification approach and collecting a reference dataset using a simple random sampling design. All three global cropland extent maps were assessed using a total reference dataset of 28,733 samples. The assessment results showed an overall accuracy of 72.3%, 80–98%, and 91.7% for GFSAD1km, 250 m (only for four continents), and 30 m maps, respectively. Additionally, a regional comparison of the three GFSAD cropland extent maps was analyzed for nine randomly selected study sites of different agriculture field sizes (i.e., small, medium, and large). The similarity among the three GFSAD cropland extent maps in these nine study sites was represented using a similarity matrix approach and two landscape metrics (i.e., Proportion of Landscape (PLAND) and Per Patch Unit (PPU)), which categorized the crop proportion and the crop pattern. A comparison of the results showed the similarities and differences in the cropland areas and their spatial extent when mapped at the three spatial resolutions and considering the different agriculture field sizes. Finally, specific recommendations were suggested for when to apply each of the three different GFSAD cropland extent maps for agriculture monitoring based on these agriculture field sizes.

Department

Natural Resources and the Environment

Publication Date

11-13-2018

Journal Title

Remote Sensing

Publisher

MDPI

Digital Object Identifier (DOI)

10.3390/rs10111800

Document Type

Article

Rights

© 2018 by the authors

Share

COinS