The impact of crop mapping error on the performance of upscaling agricultural maps
Abstract
Aggregation methods are the most common way of upscaling land cover maps. To analyze the impact of land cover mapping error on upscaling agricultural maps, we utilized the Cropland Data Layer (CDL) data with corresponding confidence level data and simulated eight levels of error using a Monte Carlo simulation for two Agriculture Statistic Districts (ASD) in the U.S.A. The results of the simulations were used as base maps for subsequent upscaling, utilizing the majority rule based aggregation method. The results show that increasing error level resulted in higher proportional errors for each crop in both study areas. As a result of increasing error level, landscape characteristics of the base map also changed greatly resulting in higher proportional error in the upscaled maps. Furthermore, the proportional error is sensitive to the crop area proportion in the base map and decreases as the crop proportion increases. These findings indicate that three factors, the error level of the thematic map, the change in landscape pattern/characteristics of the thematic map, and the objective of the project, should be considered before performing any upscaling. The first two factors can be estimated by using pre-existing land cover maps with relatively high accuracy. The third factor is dependent on the project requirements (e.g., landscape characteristics, proportions of cover types, and use of the upscaled map). Overall, improving our understanding of the impacts of land cover mapping error is necessary to the proper design for upscaling and obtaining the optimal upscaled map
Department
Natural Resources and the Environment
Publication Date
8-31-2017
Journal Title
Remote Sensing
Publisher
MDPI
Digital Object Identifier (DOI)
10.3390/rs9090901
Document Type
Article
Recommended Citation
Sun, Peijun, Russell G. Congalton, Heather Grybas, and Yaozhong Pan. 2017. The impact of crop mapping error on the performance of upscaling agricultural maps. Remote Sensing. 9. DOI:10.3390/rs9090901.
Rights
© 2017 by the authors