Comparing global models of terrestrial net primary productivity (NPP): Analysis of the seasonal behavior of NPP, LAI, and FPAR along climatic gradients across ecotones
Abstract
Estimates of the seasonal absorbed fraction of photosynthetically active radiation (FPAR) and net primary productivity (NPP) are compared among four production efficiency models (PEMs) and seven terrestrial biosphere models simulating canopy development. In addition, the simulated FPARs of the models are compared to the FASIR-FPAR derived from NOAA-AVHRR satellite observations. All models reproduce observed summergreen phenology of temperate deciduous forests rather well, but perform less well for raingreen phenology of savannas. Some models estimate a much longer active canopy in savannas than indicated by satellite observations. As a result, these models estimate high negative monthly NPP during the dry season. For boreal and tropical evergreen ecosystems, several models overestimate LAI and FPAR. When the simulated canopy does respond to unfavourable periods, the seasonal NPP is largely determined by absorbed photosynthetically active radiation (APAR). When the simulated canopy does not respond to unfavourable periods, the light use efficiency (LUE) influences the seasonal NPP more. However, the relative importance of APAR and LUE can change seasonally.
Department
Earth Systems Research Center
Publication Date
4-1-1999
Journal Title
Global Change Biology
Publisher
Wiley
Digital Object Identifier (DOI)
Document Type
Article
Recommended Citation
Bondeau A, Kaduk J, Kicklighter D, and the participants of “Potsdam ‘95” (1998) Comparing global models of terrestrial net primary productivity (NPP): Analysis of the seasonal behavior of NPP, LAI, and FPAR along climatic gradients across ecotones, Global Change Biology, 5:35-45. https://dx.doi.org/10.1046/j.1365-2486.1999.00005.x