Abstract

Trends and sources of lead (Pb) aerosol pollution in the North Pacific rim of North America from 1850 to 2001 are investigated using a high-resolution (subannual to annual) ice core record recovered from Eclipse Icefield (3017 masl; St. Elias Mountains, Canada). Beginning in the early 1940s, increasing Pb concentration at Eclipse Icefield occurs coevally with anthropogenic Pb deposition in central Greenland, suggesting that North American Pb pollution may have been in part or wholly responsible in both regions. Isotopic ratios (208Pb/207Pb and 206Pb/207Pb) from 1970 to 2001 confirm that a portion of the Pb deposited at Eclipse Icefield is anthropogenic, and that it represents a variable mixture of East Asian (Chinese and Japanese) emissions transported eastward across the Pacific Ocean and a North American component resulting from transient meridional atmospheric flow. Based on comparison with source material Pb isotope ratios, Chinese and North American coal combustion have likely been the primary sources of Eclipse Icefield Pb over the 1970–2001 time period. The Eclipse Icefield Pb isotope composition also implies that the North Pacific mid-troposphere is not directly impacted by transpolar atmospheric flow from Europe. Annually averaged Pb concentrations in the Eclipse Icefield ice core record show no long-term trend during 1970–2001; however, increasing 208Pb/207Pb and decreasing 206Pb/207Pb ratios reflect the progressive East Asian industrialization and increase in Asian pollutant outflow. The post-1970 decrease in North American Pb emissions is likely necessary to explain the Eclipse Icefield Pb concentration time series. When compared with low (lichen) and high (Mt. Logan ice core) elevation Pb data, the Eclipse ice core record suggests a gradual increase in pollutant deposition and stronger trans-Pacific Asian contribution with rising elevation in the mountains of the North Pacific rim.

Department

Earth Sciences, Earth Systems Research Center

Publication Date

8-22-2012

Journal Title

Journal of Geophysical Research: Atmospheres

Publisher

Wiley

Digital Object Identifier (DOI)

10.1029/2011JD017270

Document Type

Article

Rights

©2012. American Geophysical Union. All Rights Reserved.

Share

COinS