Landscape-scale characterization of cropland in China using Vegetation and Landsat TM images

Abstract

In this landscape-scale study we explored the potential for multitemporal 10-day composite data from the Vegetation sensor to characterize land cover types, in combination with Landsat TM image and agricultural census data. The study area (175 km by 165 km) is located in eastern Jiangsu Province, China. The Normalized Difference Vegetation Index (NDVI ) and the Normalized Difference Water Index (NDWI ) were calculated for seven 10-day composite (VGT-S10) data from 11 March to 20 May 1999. Multi-temporal NDVI and NDWI were visually examined and used for unsupervised classification. The resultant VGT classification map at 1 km resolution was compared to the TM classification map derived from unsupervised classification of a Landsat 5 TM image acquired on 26 April 1996 at 30 m resolution to quantify percent fraction of cropland within a 1 km VGT pixel; resulting in a mean of 60% for pixels classified as cropland, and 47% for pixels classified as cropland/natural vegetation mosaic. The estimates of cropland area from VGT data and TM image were also aggregated to county-level, using an administrative county map, and then compared to the 1995 county-level agricultural census data. This landscape-scale analysis incorporated image classification (e.g. coarse-resolution VGT data, fineresolution TM data), statistical census data (e.g. county-level agricultural census data) and a geographical information system (e.g. an administrative county map), and demonstrated the potential of multi-temporal VGT data for mapping of croplands across various spatial scales from landscape to region. This analysis also illustrated some of the limitations of per-pixel classification at the 1 km resolution for a heterogeneous landscape.

Department

Earth Sciences, Earth Systems Research Center

Publication Date

2002

Journal Title

International Journal of Remote Sensing

Publisher

Taylor & Francis

Digital Object Identifier (DOI)

10.1080/01431160110106069

Document Type

Article

Share

COinS