Abstract
We present a conceptual synthesis of the impact that agricultural activity in India can have on land-atmosphere interactions through irrigation. We illustrate a “bottom up” approach to evaluate the effects of land use change on both physical processes and human vulnerability. We compared vapor fluxes (estimated evaporation and transpiration) from a pre-agricultural and a contemporary land cover and found that mean annual vapor fluxes have increased by 17% (340 km3) with a 7% increase (117 km3) in the wet season and a 55% increase (223 km3) in the dry season. Two thirds of this increase was attributed to irrigation, with groundwater-based irrigation contributing 14% and 35% of the vapor fluxes in the wet and dry seasons, respectively. The area averaged change in latent heat flux across India was estimated to be 9 Wm−2. The largest increases occurred where both cropland and irrigated lands were the predominant contemporary land uses.
Department
Earth Sciences, Earth Systems Research Center
Publication Date
7-2006
Journal Title
Geophysical Research Letters
Publisher
Wiley
Digital Object Identifier (DOI)
10.1029/2006GL026550
Document Type
Article
Recommended Citation
Douglas, E. M., D. Niyogi, S. Frolking, J. B. Yeluripati, R. A. Pielke Sr., N. Niyogi, C. J. Vörösmarty, and U. C. Mohanty (2006), Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian Monsoon Belt, Geophys. Res. Lett., 33, L14403, doi:10.1029/2006GL026550.
Rights
Copyright 2006 by the American Geophysical Union.