Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Abstract

The atmospheric deposition of mercury (Hg) occurs via several mechanisms including wet, dry, and occult processes. In an effort to understand the atmospheric cycling and seasonal depositional characteristics of Hg, event-based wet deposition samples and reactive gaseous Hg (RGM) measurements were collected for approximately 3 years at Thompson Farm (TF), a near-coastal rural site in Durham, NH, part of the University of New Hampshire AIRMAP Observing Network. Total aqueous mercury exhibited seasonal patterns in Hg wet deposition at TF. The lowest Hg wet deposition was measured in the winter with an average total seasonal deposition of 1.56 μg m−2compared to the summer average of 4.71 μg m−2. Inter-annual differences in total wet deposition are generally linked with precipitation volume, with the greatest deposition occurring in the wettest year. Relationships between surface level RGM and Hg wet deposition were also investigated based on continuous RGM measurements at TF from November 2006 to September 2009. No correlations were observed between RGM mixing ratios and Hg wet deposition, however the ineffective scavenging of RGM during winter precipitation events was evidenced by the less frequent depletion of RGM below the detection level. Seasonal dry deposition of reactive gaseous Hg (RGM) was estimated using an order-of-magnitude approach. RGM mixing ratios and dry deposition estimates were greatest during the winter and spring. The seasonal ratios of Hg wet deposition to RGM dry deposition vary by up to a factor of 80.

Department

Earth Sciences

Publication Date

8-1-2011

Journal Title

Atmospheric Chemistry and Physics

Publisher

European Geosciences Union

Digital Object Identifier (DOI)

doi:10.5194/acp-11-7657-2011

Document Type

Article

Rights

© Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 License.

Included in

Chemistry Commons

Share

COinS