Date of Award
Spring 2013
Project Type
Dissertation
Program or Major
Physics
Degree Name
Doctor of Philosophy
First Advisor
Marc Lessard
Abstract
Pulsating aurora, a common phenomenon in the polar night sky, offers a unique opportunity to study the precipitating particle populations responsible for this subtle yet fascinating display of lights. The conjecture that the source of these electrons originates near the equator, made decades ago, has now been confirmed using in-situ measurements. In this thesis, we present these results that compare the frequencies of equatorial electron flux pulsations and pulsating aurora luminosity fluctuations at the ionospheric footprint. We use simultaneous satellite-based data from GOES 13 and ground-based data from the THEMIS allsky imager array to show that there is a direct correlation between luminosity fluctuations near the ground and particle pulsations in equatorial space; the source region of the pulsating aurora.
Pulsating aurora almost exclusively occurs embedded within a region of diffuse aurora. By studying the two particle populations, one can contribute to the theory behind auroral pulsations. The interplay between the two auroral types, and the systems that control them, are not yet well known. We analyze ground optical observations of pulsating aurora events to attempt to characterize the relationship between the two types of auroral precipitation.
Pulsating aurora is a significant component of energy transfer within the framework of magnetosphere-ionosphere coupling. Further study of the morphology, total energy deposition, and the pulsation mechanism of pulsating aurora is key to a better understanding of our earth-sun system.
Recommended Citation
Jaynes, Allison, "Pulsating aurora: Source region & morphology" (2013). Doctoral Dissertations. 727.
https://scholars.unh.edu/dissertation/727