Date of Award
Winter 2012
Project Type
Dissertation
Program or Major
Physics
Degree Name
Doctor of Philosophy
First Advisor
Benjamin G D Chandran
Abstract
Determining the mechanisms that heat the solar corona is a fundamental problem in heliospheric physics. One of the proposed models is based on low-frequency Alfven waves (o << O i) launched from the coronal base. Theoretical studies and numerical simulations have shown that Alfven-wave low-beta turbulence primarily cascades to smaller scales perpendicular to the mean magnetic field rather than smaller parallel scales, where beta = 8pip/B 2 is the ratio of the plasma pressure to the magnetic pressure. Because of this, the wave frequencies at small scales remain small compared to the proton cyclotron frequency. In this work, we study the possibility of ion heating by this low-frequency Alfven-wave turbulence in a reduced magnetohydrodynamic (RMHD) simulation. In a low-beta plasma, when an ion's gyroradius is comparable to the wave length in the perpendicular direction, the ion undergoes a random walk in the time-varying electrostatic potential. When the fluctuation amplitude exceeds a certain threshold, this stochastic mechanism provides ion heating in the plane perpendicular to the magnetic field lines. We evaluate the stochastic heating rate as a function of the amplitude of the turbulence and compare our findings to previous theoretical results.
Recommended Citation
Xia, Qian, "Perpendicular Ion Heating by Low-frequency Alfven-wave Turbulence" (2012). Doctoral Dissertations. 706.
https://scholars.unh.edu/dissertation/706