Date of Award
Fall 2009
Project Type
Dissertation
Program or Major
Mathematics
Degree Name
Doctor of Philosophy
First Advisor
Eric Grinberg
Abstract
Let D be a bounded domain in the complex vector space Cn . We say that D is symmetric iff, given any two points p, q ∈ D, there is a biholomorphism &phis;, which interchanges p and q. These domains were classified abstractly by Elie Cartan in his general study of symmetric spaces, and were canonically realized in Cn by Harish-Chandra. They include polydisks and Siegel domains.
Let D be a bounded symmetric domain in Cn , and G be the largest connected group of biholomorphic automorphisms of D. The algebra C( D) of all continuous (not necessarily bounded) complex-valued functions on D with compact-open topology is a Frechet algebra. A closed subalgebra of C(D) is called an invariant algebra if it is closed under compositions with elements of G.
We prove that if D is irreducible, then there are only three invariant algebras with identity with maximal ideal space D : C(D), the set of all holomorphic functions H(D) and the set of all antiholomorphic functions H¯(D). This result partially generalizes the Rudin's classification of invariant algebras on unit ball in Cn . For the general symmetric bounded domain D we prove that the only invariant algebras are tensor products of invariant algebras on irreducible factors of D.
Recommended Citation
Eroshkin, Oleg, "Invariant Frechet algebras on bounded symmetric domains" (2009). Doctoral Dissertations. 494.
https://scholars.unh.edu/dissertation/494