Date of Award

Fall 2001

Project Type

Dissertation

Program or Major

Engineering: Systems Design

Degree Name

Doctor of Philosophy

First Advisor

Robert B Jerard

Abstract

The popularity of outsourcing fabrication introduces a problem, namely an inevitable loss of data as information is translated from design to fabrication or from one system to another. Unsatisfactory information, delivered to the outsourcing facility, and inefficient communications between design and fabrication certainly cause enormous economic losses from late product delivery or bad product quality. To overcome these data transferring problems and to improve communications between the design and fabrication sides, a design and manufacturing methodology for custom machined parts in E-Commerce is suggested and implemented in this dissertation. This methodology is based on the idea of a "Clean Interface" like the Mead-Conway approach for VLSI chip fabrication [MEAD81].

Essential design information for fabricating parts properly with NC (Numerical Controlled) milling machines is expressed in machining/manufacturing features, fabrication friendly terminologies, and is represented by a new language called NCML (Numerical Control Markup Language). NCML is based on XML (Extensible Markup Language)---the document-processing standard proposed by the World Wide Web Consortium (W3C). NCML is designed to include the minimum requisite information necessary for the manufacturer to produce the product. The designer defines NCML, which overcomes geographical separation between design and manufacturing, and minimizes unnecessary interactions caused from lack of information.

To prove the possibility of custom machine part fabrication and E-Commerce with NCML, three software systems are implemented. These three systems are FACILE/Design, FACILE/Fabricate, and E-Mill. FACILE is a prototype CAD/CAM system developed to verify NCML feasibility as an Electronic Data Interchange (EDI) format. FACILE/Design is a system based on manufacturing features like holes, contours, and pockets. It can be used to create geometric models, verify the design, and create NCML files. The NCML file is imported by FACILE/Fabricate and turned into G-codes by applying appropriate cutting conditions. Simplified machining simulation and cost estimation tools using NCML inputs are also developed to show some examples of NCML applications that can help design and manufacturing activities. To demonstrate how NCML could be used in a web-based application, an E-Business model called E-Mill has been implemented. E-Mill is a market place for machined parts whose data is encoded in NCML. To make E-Mill a feasible E-Commerce model, two-way communication based on NCML data and the visualization of 3D geometric models in the Virtual Reality Modeling Language (VRML) are equipped with a competitive matchmaking mechanism.

In this dissertation, a whole system based on NCML bridges the gap between design and manufacturing. As a part of the NCML validation process for the new system, the pros and cons of NCML design features are discussed. A system for cost estimation is calibrated and compared to real cutting results for the purpose of validation.

Share

COinS