Date of Award
Spring 2015
Project Type
Dissertation
Program or Major
Mechanical Engineering
Degree Name
Doctor of Philosophy
First Advisor
John P McHugh
Second Advisor
Gregory P Chini
Third Advisor
Yannis P Korkolis
Abstract
Nonlinear waves on an infinite string with a rapid change in properties at one location are treated. The string is an idealized version of more complex configurations in both fluids and solids. This idealized version treats the property change as an interface with a discontinuity in properties. Packets of waves are then considered with a reduced model, here a set of nonlinear Schr¨odinger (NLS) equations. The stress and the displacement must both be matched at the interface, resulting in dynamic and kinematic interfacial conditions. The dynamic condition produces an inhomogeneous effect that cannot be treated successfully with separation-of-variables. This inhomogeneity is treated here with a time-evolution approach using Laplace transforms. The results show that this inhomogeneity creates a mean longitudinal displacement on both sides of the interface and a shift in the position of the interface as the waves transit the interface. This mean longitudinal displacement corresponds to a sustained strain in the string. The mean longitudinal displacement develops three distinct features. One feature has a length scale that is half the wave-length of the incident waves, while the lengths of the other two features have the same order as the length of the wave packet. The position of maximum strain as a result of this mean is often at the interface, depending on parameter values. These results apply to a variety of applications, such as waves in ocean ice, Rayleigh waves caused by earthquakes, internal waves in the oceans and atmosphere, as well as waves in stretched cables.
Recommended Citation
Arredondo, Robert, "Nonlinear Waves on a String with Inhomogeneous Properties" (2015). Doctoral Dissertations. 2185.
https://scholars.unh.edu/dissertation/2185