Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Abstract
In a case study, we investigate transitions between fundamental magnetosphere–ionosphere (M-I) coupling modes during storm-time conditions (SYM-H between −100 and −160 nT) driven by an interplanetary coronal mass ejection (ICME). We combine observations from the near tail, at geostationary altitude (GOES-10), and electrojet activities across the auroral oval at postnoon-to-dusk and midnight. After an interval of strong westward electrojet (WEJ) activity, a 3 h long state of attenuated/quenched WEJ activity was initiated by abrupt drops in the solar wind density and dynamic pressure. The attenuated substorm activity consisted of brief phases of magnetic field perturbation and electron flux decrease at GOES-10 near midnight and moderately strong conjugate events of WEJ enhancements at the southern boundary of the oval, as well as a series of very strong eastward electrojet (EEJ) events at dusk, during a phase of enhanced ring current evolution, i.e., enhanced SYM-H deflection within −120 to −150 nT. Each of these M-I coupling events was preceded by poleward boundary intensifications and auroral streamers at higher oval latitudes. We identify this mode of attenuated substorm activity as being due to a magnetotail state characterized by bursty reconnection and bursty bulk flows/dipolarization fronts (multiple current wedgelets) with associated injection dynamo in the near tail, in their braking phase. The latter process is associated with activations of the Bostrøm type II (meridional) current system. A transition to the next state of M-I coupling, when a full substorm expansion took place, was triggered by an abrupt increase of the ICME dynamic pressure from 1 to 5 nPa. The brief field deflection events at GOES-10 were then replaced by a 20 min long interval of extreme field stretching (Bz approaching 5 nT and Bx ≈ 100 nT) followed by a major dipolarization (Δ Bz ≈ 100 nT). In the ionosphere the latter stage appeared as a "full-size" stepwise poleward expansion of the WEJ. It thus appears that the ICME passage led to fundamentally different M-I coupling states corresponding to different levels of dynamic pressure (Pdyn) under otherwise very similar ICME conditions. Full WEJ activity, covering a wide latitude range across the auroral oval in the midnight sector, was attenuated by the abrupt dynamic pressure decrease and resumed after the subsequent abrupt increase.
Publication Date
4-1-2015
Journal Title
Annales Geophysicae
Publisher
EGU
Digital Object Identifier (DOI)
Document Type
Article
Recommended Citation
Sandholt, P. E.; Farrugia, C. J.; Denig, W. F. (2015). Transitions between states of magnetotail-ionosphere coupling and the role of solar wind dynamic pressure: the 25 July 2004 interplanetary CME case, ANNALES GEOPHYSICAE. Vol. 33, No. 4, 427-436. DOI: 10.5194/angeo-33-427-2015
Comments
This is an article published by EGU in Annales Geophysicae in 2015, available online: https://dx.doi.org/10.5194/angeo-33-427-2015