Simultaneous application of dissolution/precipitation and surface complexation / precipitation modeling to contaminant leaching from weathered steel slag


This paper discusses the modeling of anion and cation leaching from complex matrixes such as weathered steel slag. The novelty of the method is its simultaneous application of the theoretical models for solubility, competitive sorption, and surface precipitation phenomena to a complex system. Selective chemical extractions, pH dependent leaching experiments, and geochemical modeling were used to investigate the thermodynamic equilibrium of 12 ions (As, Ca, Cr, Ba, SO4, Mg, Cd, Cu, Mo, Pb, V, and Zn) with aqueous complexes, soluble solids, and sorptive surfaces in the presence of 12 background analytes (Al, Cl, Co, Fe, K, Mn, Na, Ni, Hg, NO3, CO3, and Ba). Modeling results show that surface complexation and surface precipitation reactions limit the aqueous concentrations of Cd, Zn, and Pb in an environment where Ca, Mg, Si, and CO3 dissolve from soluble solids and compete for sorption sites. The leaching of SO4, Cr, As, Si, Ca, and Mg appears to be controlled by corresponding soluble solids.


Civil Engineering

Publication Date


Journal Title

Environmental Science and Technology


American Chemical Society

Digital Object Identifier (DOI)


Document Type



Copyright © 2005 American Chemical Society