Interactive 4D Visualization of Sediment Transport Models

Abstract

Coastal sediment transport models simulate the effects that waves, currents, and tides have on near-shore bathymetry and features such as beaches and barrier islands. Understanding these dynamic processes is integral to the study of coastline stability, beach erosion, and environmental contamination. Furthermore, analyzing the results of these simulations is a critical task in the design, placement, and engineering of coastal structures such as seawalls, jetties, support pilings for wind turbines, etc. Despite the importance of these models, there is a lack of available visualization software that allows users to explore and perform analysis on these datasets in an intuitive and effective manner. Existing visualization interfaces for these datasets often present only one variable at a time, using two dimensional plan or cross-sectional views. These visual restrictions limit the ability to observe the contents in the proper overall context, both in spatial and multi-dimensional terms. To improve upon these limitations, we use 3D rendering and particle system based illustration techniques to show water column/flow data across all depths simultaneously. We can also encode multiple variables across different perceptual channels (color, texture, motion, etc.) to enrich surfaces with multi-dimensional information. Interactive tools are provided, which can be used to explore the dataset and find regions-of-interest for further investigation. Our visualization package provides an intuitive 4D (3D, time-varying) visualization of sediment transport model output. In addition, we are also integrating real world observations with the simulated data to support analysis of the impact from major sediment transport events. In particular, we have been focusing on the effects of Superstorm Sandy on the Redbird Artificial Reef Site, offshore of Delaware Bay. Based on our pre- and post-storm high-resolution sonar surveys, there has significant scour and bedform migration around the sunken subway cars and other vessels present at the Redbird site. Due to the extensive surveying and historical data availability in the area, the site is highly attractive for comparing hindcasted sediment transport simulations to our observations of actual changes. This work has the potential to strengthen the accuracy of sediment transport modeling, as well as help predict and prepare for future changes due to similar extreme sediment transport events.

Department

Center for Coastal and Ocean Mapping

Publication Date

12-2013

Journal Title

Fall Meeting, American Geological Union (AGU)

Conference Date

Dec 9 - Dec 13, 2013

Publisher Place

San Francisco, CA, USA

Publisher

American Geophysical Union Publications

Document Type

Poster

Share

COinS