Detecting bedform migration in Portsmouth Harbor, New Hampshire, USA, on relatively short spatial and temporal scales
Abstract
Multibeam echosounder (MBES) systems have enjoyed recent popularity as a tool in bedform-migration studies due to their ability to produce high-resolution seafloor imagery with complete bottom coverage. Although shallow-water MBES systems may achieve decimeter-scale data resolution, the use of MBES to successfully detect and quantify bedform migration on short time-scales (days to weeks) where the migration distance is relatively small (< 1 m) remains limited by positioning uncertainty. In this study we evaluate short-term bedform migration and sediment transport in a bedform field at the entrance to Portsmouth Harbor, New Hampshire, USA. Bedform dynamics over 24-hour and multi-day periods were determined from high-resolution bathymetry (0.25 m grid resolution) acquired with a Kongsberg EM3002D MBES system. Position, heading and attitude data were acquired with an Applanix POS/MV system with integrated real-time kinematic GPS correctors, providing a horizontal positioning uncertainty of < 0.1 m at the GPS receiver. MBES surveys were conducted on June 8, 14 and 15 in 2007 and July 3 and 9 in 2008. Acoustic current meters were deployed at two stations within the survey area in 2008 to provide simultaneous observations of current velocities at a height of 1 m above the bottom. A new approach was developed and used for detecting and quantifying bedform migration from the bathymetry. Our approach utilizes a ridge-extraction algorithm to derive a binary map of dune-crest positions from the bathymetric surface, and then calculates the displacements of small (6.25 m2) subsets of dune crest. Preliminary results indicate that bedform migrations of ≥ 0.1 m were successfully resolved. Morphology of the bedform field is dominated by medium and large, two-dimensional, asymmetrical subaqueous dunes (0.4 to 0.8 m height, 8 to 16 m wavelength). Small, two-dimensional, ebb-oriented subaqueous dunes (0.3 m height, 5 m wavelength) line the eastern margin of the bedform field, which is adjacent to the channel thalweg. Initial analysis indicates that bedforms are active on 24-hour and multi-day cycles, with migrations of > 1.2 m observed on multi-day cycles. The highest bedform-migration rates are observed along the eastern margin where smaller dunes occur. In 2007 we observed a reciprocal pattern of bedform migration, in which dunes in the western half of the bedform field migrated in a net flood (northward) direction and dunes in the eastern half migrated in a net ebb (southward) direction. In 2008, the eastern dune population was still active and southward-migrating, though the western half of the bedform field appeared to be inactive. The observed pattern of bedform migration is supported by current-meter data from six tidal cycles (spring tidal conditions) during the 2008 experiment, which reveal a strong cross-channel difference in the flood and ebb currents. The data indicate ebb-current dominance in the eastern half of the study area and flood-current dominance in the western half of the study area. Individual bedforms cannot be tracked over the annual period (2007 to 2008) without a higher survey-repetition rate, suggesting that annual migration distances are comparable with or greater than the bedform wavelength, and/or that bedform morphology changes significantly over time-scales shorter than one year
Department
Center for Coastal and Ocean Mapping
Publication Date
Fall 2008
Volume
89 (53)
Journal Title
Fall Meeting, American Geophysical Union (AGU)
Conference Date
Dec 15 - Dec 19, 2008
Publisher Place
San Francisco, CA, USA
Publisher
American Geophysical Union Publications
Document Type
Conference Proceeding
Recommended Citation
Felszenberg, J., Ward, L., Rzhanov, Y., Irish, J., Mayer, L. Detecting Bedform Migration in Portsmouth Harbor, New Hampshire, USA on Relatively Short Spatial and Temporal Scales, Eos Trans. AGU, 89(53), Fall Meet. Suppl., Abstract OS21E-1219