Abstract

Bottom fishing gear is known to alter benthic structure, however changes in the shape of the sea floor are often too subtle to be detected by acoustic remote sensing. Nonetheless, long linear features were observed during a recent high-resolution multibeam sonar survey of Jeffreys Ledge, a prominent fishing ground in Gulf of Maine, located about 50 km from Portsmouth, NH. These marks, which have a relief of only few centimeters, are presumed to be caused by bottom dredging gear used in the area for scallop and clam fisheries. The extraction of these small features from a noisy data set (including several instrumental artifacts) presented a number of challenges. To enhance the detection and identification of these features, data artifacts were identified and removed selectively using frequency filtering. Verification was attempted with sidescan sonar and video surveys. While clearly visible on the sidescan sonar records, the bottom marks were not discernable in the video survey. The inability to see the bottom marks with video may be related to the age of the marks, and has important ramifications about appropriate methodologies for quantifying gear impact. Results from multibeam sonar, sidescan sonar and video surveys suggest that the best methodology to deal with inspection of bottom fishing marks is to integrate data in a 3D GIS-like environment.

Department

Center for Coastal and Ocean Mapping

Publication Date

3-2005

Volume

2005

Journal Title

U.S. Hydrographic Conference (US HYDRO)

Pages

1-21

Conference Date

Mar 29 - Mar 31, 2005

Publisher Place

San Diego, CA, USA

Publisher

Hydrographic Society of America

Document Type

Conference Proceeding

Share

COinS