Date of Award

Winter 2016

Project Type


Program or Major

Electrical and Computer Engineering

Degree Name

Master of Science

First Advisor

Se Young Yoon

Second Advisor

Micheal J Carter

Third Advisor

Qiaoyan Yu


Gain scheduling is a control method that is used in nonlinear systems to optimize their controlled performance and robustness over a wide range of operating conditions. It is one of the most commonly used controller design approaches for nonlinear systems. In this control technique, the controller consists of a collection of linear controllers, each of which provides satisfactory closed-loop stability and performance for a small operating region, and combined they guarantee the stability of the system along the entire operating range. The operating region of the system is determined by a scheduling signal, also known as the scheduling variable, which may be either exogenous or endogenous with respect to the plan. A good design of the gain-scheduled controller requires a suitable selection of the scheduling variables to properly reflect the dynamics of the system.

In this thesis, we apply the gain scheduling control method to the control of compression systems with active magnetic bearings (AMBs). First, a gain-scheduled controller is designed and tested for the rotor levitation control of the AMB system. The levitation controller is designed to guarantee robust rotor levitation over a wide range of rotating speeds. We show through numerical simulation that the rotor vibration is contained in the presence of uncertainties introduced by speed dependent gyroscopic forces. Next, we implement the gain scheduling control method to the active stabilization of compressor surge in a compression system using the AMBs as actuators. Recently, Yoon et al. [1] showed that AMBs can be used to stabilize the surge instability in a compression system. In this thesis, we demonstrate that gain scheduling control can effectively extend the stable operating region of the compression system beyond the limits presented in [1]. For the stabilization of surge, a gain-scheduled controller was obtained by combining six linear controllers that together they cover the full operating range of the compression system. We were able to demonstrate through numerical simulation that the designed surge controller is effective in suppressing the instability down to a throttle valve opening of 12%, and in the presence of random flow disturbance and actuator saturation. An observer-based technique was implemented to achieve a bumpless and smooth transfer when switching between the linear controllers.