Date of Award

Spring 2020

Project Type


Program or Major

Information Technology

Degree Name

Master of Science

First Advisor

Mihaela Sabin

Second Advisor

Karen Jin

Third Advisor

Jeremiah Johnson


MATLAB is a multi-paradigm proprietary programming language and numerical computing environment developed by MathWorks. Within MATLAB Integrated Development Environment (IDE) you can perform Computer-aided design (CAD), different matrix manipulations, plotting of functions and data, implementation algorithms, creation of user interfaces, and has the ability to interface with programs written in other languages1. Since, its launch in 1984 MATLAB software has not particularly been associated within the field of data science. In 2013, that changed with the launch of their new data science concentrated toolboxes that included Deep Learning, Image Processing, Computer Vision, and then a year later Statistics and Machine Learning.

The main objective of my thesis was to research and explore the field of data science. More specifically pertaining to the development of an object recognition application that could be built entirely using MATLAB IDE and have a positive social impact on the deaf community. And in doing so, answering the question, could MATLAB be utilized for development of this type of application? To simultaneously answer this question while addressing my main objectives, I constructed two different object recognition protocols utilizing MATLAB_R2019 with the add-on data science tool packages. I named the protocols ASLtranslate (I) and (II). This allowed me to experiment with all of MATLAB data science toolboxes while learning the differences, benefits, and disadvantages of using multiple approaches to the same problem.

The methods and approaches for the design of both versions was very similar. ASLtranslate takes in 2D image of American Sign Language (ASL) hand gestures as an input, classifies the image and then outputs its corresponding alphabet character. ASLtranslate (I) was an implementation of image category classification using machine learning methods. ASLtranslate (II) was implemented by using a deep learning method called transfer learning, done by fine-tuning a pre-trained convolutional neural network (CNN), AlexNet, to perform classification on a new collection of images.